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Abstract 

When making causal inferences, treatment-induced confounders complicate analyses of time-

varying treatment effects. Conditioning on these variables naively to estimate marginal effects 

may inappropriately block causal pathways and may induce spurious associations between 

treatment and the outcome, leading to bias. Although several methods for estimating marginal 

effects avoid these complications, including inverse-probability-of-treatment-weighted 

estimation of marginal structural models as well as g- and regression-with-residuals estimation of 

highly constrained structural nested mean models, each suffers from a set of nontrivial 

limitations, among them an inability to accommodate effect modification. In this study, we adapt 

the method of regression-with-residuals to estimate marginal effects with a set of moderately 

constrained structural nested mean models that easily accommodate several types of treatment-

by-confounder interaction. With this approach, the confounders at each time point are first 

residualized with respect to the observed past and then the outcome is regressed on all prior 

variables, including a set of treatment-by-confounder interaction terms, with the residual terms 

substituted for the untransformed confounders both as “main effects” and as part of any 

interaction terms. Through a series of simulation experiments and empirical examples, we show 

that this approach outperforms other methods for estimating the marginal effects of time-varying 

treatments. 

 

Keywords: treatment-induced confounding, structural nested mean models, regression-with-

residuals, g-estimation, marginal structural models, inverse probability of treatment weighting  
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1. Introduction  

In analyses of time-varying treatment effects, social scientists must often contend with the 

complications posed by treatment-induced confounders (e.g., Acharya et al. 2016; Elwert and 

Winship 2014; Wodtke et al. 2011). A treatment-induced confounder is a variable that is affected 

by a prior treatment and affects both selection into future treatment and the outcome. For 

example, we consider whether living in a disadvantaged neighborhood throughout childhood and 

adolescence affects academic achievement (e.g., Sampson et al. 2008; Wodtke et al. 2011, 2016). 

In studies of neighborhood effects, parental income is likely affected by prior neighborhood 

conditions and also likely affects both future residential choices and child educational outcomes. 

If left uncontrolled, treatment-induced confounders lead to bias in estimates of marginal 

effects, such as the cumulative treatment effect (𝐶𝐶𝐶𝐶𝐶𝐶) in analyses of time-varying treatments. At 

the same time, adjusting naively for treatment-induced confounders by, for example, including 

them as predictors in a conventional regression model or matching on them via the propensity 

score also leads to bias. Specifically, conditioning on a treatment-induced confounder with 

conventional regression or matching methods leads to bias from over-control of intermediate 

pathways and endogenous selection (Elwert and Winship 2014; Robins et al. 2000; VanderWeele 

2015). Thus, even if all relevant confounders are observed, which is a necessary condition for 

drawing causal inferences from any non-experimental study, treatment-induced confounders 

pose additional challenges for the most common approaches to covariate adjustment. Alternative 

methods are therefore required when estimating marginal effects in the presence of these 

variables. 

Fortunately, there are several methods that avoid the complications outlined previously 

and that are capable of consistently estimating marginal effects, even when adjustment is 
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required for treatment-induced confounders. These include inverse-probability-of-treatment-

weighted (IPTW) estimation of marginal structural models (MSMs; Robins et al. 1994, 2000), g-

estimation of highly constrained structural nested mean models (SNMMs; Naimi et al. 2017; 

Vansteelandt 2009; Vansteelandt and Sjolander 2016), and regression-with-residuals (RWR) 

estimation of highly constrained SNMMs (Wodtke 2018).  

Each of these methods, however, suffers from a set of nontrivial limitations. IPTW 

estimation is relatively inefficient, is difficult to use with continuous treatments, and may suffer 

from finite-sample bias when confounders strongly predict treatment (Lunceford and Davidian 

2004; Naimi et al. 2014; Robins et al. 1994). G- and RWR estimation of highly constrained 

SNMMs for marginal effects avoid the limitations of IPTW, but they are premised on the strong 

assumption of no effect modification (e.g., Vansteelandt 2009; Wodtke 2018), which is 

unrealistic in most social science applications.1 If, for example, a treatment-induced confounder 

also modifies the effect of a future treatment on the outcome, then these methods suffer from 

model misspecification bias. Because effect modification is ubiquitous in the social sciences 

(Morgan and Winship 2015; Xie 2007), this assumption may limit the utility of these methods in 

practice. 

In this study, we adapt the method of RWR to estimate a set of moderately constrained 

SNMMs for marginal effects that accommodate several types of treatment-by-confounder 

interaction. Briefly, RWR estimation of marginal effects in a moderately constrained SNMM 

proceeds in two stages. First, the confounders at each time point are regressed on all prior 

variables and then residualized. Second, the outcome is regressed on all prior variables, including 

                                                           
1 Effect modification is also sometimes referred to as effect moderation (e.g., Almirall et al. 
2010; Wodtke and Almirall 2017). 
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a set of treatment-by-confounder interaction terms, with the residuals from the first stage 

substituted for the untransformed confounders both as “main effects” and as part of the 

interaction terms. Our adaptation differs from previous implementations of RWR (e.g., Almirall 

et al. 2010; Wodtke and Almirall 2017; Wodtke 2018) by additionally including the residualized 

confounders in interaction terms with treatment, which accommodates several types of effect 

modification while neatly isolating the marginal effects of interest in a single, possibly vector-

valued, parameter. 

Under the assumptions of sequential ignorability and no model misspecification, the 

proposed method is consistent for marginal effects, like the 𝐶𝐶𝐶𝐶𝐶𝐶, even in the presence of 

treatment-induced confounders. It avoids the biases that arise with naive adjustments for 

treatment-induced confounders because the residualized confounders are purged of their 

association with prior treatment and thus including them in a regression model for the outcome is 

unproblematic. In addition, because it does not involve weighting by a function of the 

conditional probability of treatment, the proposed method avoids the limitations associated with 

IPTW estimation. Finally, because it accommodates several types of treatment-by-confounder 

interaction, the proposed method also mitigates the limitations associated with both g- and RWR 

estimation of marginal effects using a highly constrained SNMM in which effect modification is 

assumed away entirely.  

In the sections that follow, we begin by considering the problem of estimating marginal 

effects for a time-varying treatment. First, we formally define the effects of interest, explain 

when they are identified from observed data, and illustrate the problems that afflict conventional 

estimation methods in the presence of treatment-induced confounding. Second, we present an 

SNMM for the conditional, rather than marginal, effects of treatment, but we then show how 
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these conditional effects can be additively decomposed into a set of functions that capture the 

marginal effects of interest and another set of functions that capture effect modification. Third, 

we show how to appropriately parameterize these functions and adapt the method of RWR to 

estimate marginal effects with an SNMM under this alternative parameterization. Next, we 

briefly consider analyses of causal mediation and the problem of estimating controlled direct 

effects in the presence of mediator-outcome confounders that are affected by treatment, which 

we show can be accomplished with the same methods used for estimating marginal effects in the 

time-varying setting. Finally, with a series of simulation experiments and empirical examples, 

we illustrate several applications of our proposed method and show that it outperforms other 

common approaches.  

 

2. Background 

2.1. Notation, Estimands, and Identification 

In this section, we formally define the marginal, or population average, effects of interest and 

explain when they can be identified from observed data, drawing on the potential outcomes 

framework (Holland 1986; Rubin 1974) and directed acyclic graphs (DAGs; Pearl 2009) 

throughout. For expositional clarity, we focus on a simplified example with a binary treatment 

measured at two time points, a binary confounder measured at two time points, and a continuous 

outcome measured at the end of follow-up, although these methods can be easily adapted for 

more complex analyses. 

First, let 𝑎𝑎𝑡𝑡 = 1 denote exposure to treatment, and 𝑎𝑎𝑡𝑡 = 0 denote the absence of 

treatment, at time 𝑡𝑡 ∈ {1,2}. Second, let 𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) denote the potential outcome for subject 𝑖𝑖 had 

she previously been exposed to the treatment sequence {𝑎𝑎1,𝑎𝑎2}. For example, 𝑌𝑌𝑖𝑖(0,0) is the 
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potential outcome for subject 𝑖𝑖 had she never received treatment, 𝑌𝑌𝑖𝑖(1,0) is her potential outcome 

had she received treatment only at time 𝑡𝑡 = 1, and so on. In this framework, each subject is 

conceived to have a potential outcome corresponding to each of the four possible treatment 

sequences, but only the single potential outcome corresponding to the treatment sequence 

actually received is ever observed in reality, and the others are so-called “counterfactuals.” 

Third, let 𝐶𝐶𝑖𝑖1 denote the confounder for subject 𝑖𝑖 measured just prior to treatment at time 𝑡𝑡 = 1, 

and let 𝐶𝐶𝑖𝑖2(𝑎𝑎1) denote the confounder for subject 𝑖𝑖 measured just before treatment at time 𝑡𝑡 = 2, 

which is indexed by 𝑎𝑎1 as a potential outcome to reflect that it is affected by prior treatment. In 

other words, 𝐶𝐶𝑖𝑖2(𝑎𝑎1) is a treatment-induced confounder. Finally, let the set {𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐶𝐶𝑖𝑖2,𝐴𝐴𝑖𝑖2,𝑌𝑌𝑖𝑖} 

denote the observed data in temporal order. 

In general, marginal effects are contrasts between different potential outcomes averaged 

over a population of individuals. Specifically, they give the average difference in the end-of-

study outcome had everyone in the target population received one rather than another treatment 

sequence. With two time points, several different marginal effects may be of interest. The first is 

the distal treatment effect, or 𝐷𝐷𝐶𝐶𝐶𝐶, which can be formally defined as  

𝐷𝐷𝐶𝐶𝐶𝐶(𝑎𝑎1) = 𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1, 0) − 𝑌𝑌𝑖𝑖(0,0)�.      (1) 

It gives the average effect of receiving treatment only at time 𝑡𝑡 = 1 rather than never receiving 

treatment. The second is the proximal treatment effect, or 𝑃𝑃𝐶𝐶𝐶𝐶, which can be formally defined as  

𝑃𝑃𝐶𝐶𝐶𝐶(𝑎𝑎1,𝑎𝑎2) = 𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) − 𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)�.     (2) 

When 𝑎𝑎1 = 0, it gives the average effect of receiving treatment only at time 𝑡𝑡 = 2 rather than 

never receiving treatment, and when 𝑎𝑎1 = 1, it gives the average effect of always receiving 

treatment rather than receiving treatment only at time 𝑡𝑡 = 1. The third is the cumulative 

treatment effect, or 𝐶𝐶𝐶𝐶𝐶𝐶. This effect is equal to the sum of 𝐷𝐷𝐶𝐶𝐶𝐶(1) and 𝑃𝑃𝐶𝐶𝐶𝐶(1,1), 
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𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐷𝐷𝐶𝐶𝐶𝐶(1) + 𝑃𝑃𝐶𝐶𝐶𝐶(1,1) = 

𝐶𝐶�𝑌𝑌𝑖𝑖(1,0) − 𝑌𝑌𝑖𝑖(0,0)� + 𝐶𝐶�𝑌𝑌𝑖𝑖(1,1) − 𝑌𝑌𝑖𝑖(1,0)� = 𝐶𝐶�𝑌𝑌𝑖𝑖(1,1) − 𝑌𝑌𝑖𝑖(0,0)�,     (3) 

which gives the average effect of being always versus never treated. Finally, the last is the 

interaction effect, or 𝐼𝐼𝐼𝐼𝐶𝐶. This effect can be formally defined as 

𝐼𝐼𝐼𝐼𝐶𝐶 = 𝑃𝑃𝐶𝐶𝐶𝐶(1,1) − 𝑃𝑃𝐶𝐶𝐶𝐶(0,1) = 𝐶𝐶�𝑌𝑌𝑖𝑖(1,1) − 𝑌𝑌𝑖𝑖(1,0)� − 𝐶𝐶�𝑌𝑌𝑖𝑖(0,1) − 𝑌𝑌𝑖𝑖(0,0)�,     (4) 

which describes how the effect of receiving treatment at time 𝑡𝑡 = 2 differs depending on whether 

an individual had previously received treatment at time 𝑡𝑡 = 1. 

All of these effects can be non-parametrically identified from the observed data under the 

assumptions of stable unit treatment values, consistency, positivity, and sequential ignorability 

(Robins et al. 1994, 2000; Rubin 1986). The stable unit treatment value assumption (SUTVA) 

requires that the potential outcomes for any given individual be unaffected by the mechanisms 

used to assign treatment status or by the treatments to which other individuals are exposed. The 

consistency assumption requires that the observed outcome 𝑌𝑌𝑖𝑖 be equal to 𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) whenever 

𝐴𝐴𝑖𝑖1 = 𝑎𝑎1 and 𝐴𝐴𝑖𝑖2 = 𝑎𝑎2. The positivity assumption requires that there not be any subgroups 

within the target population that are treated or untreated with certainty at any time point. The 

sequential ignorability assumption requires that the potential outcomes are independent of 

treatment at each time point conditional on the observed past. Formally, this assumption can be 

expressed as  

𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) ⊥ 𝐴𝐴𝑖𝑖1|𝐶𝐶𝑖𝑖1 ∀ (𝑎𝑎1,𝑎𝑎2) and 𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) ⊥ 𝐴𝐴𝑖𝑖2|𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐶𝐶𝑖𝑖2 ∀ (𝑎𝑎1,𝑎𝑎2),     (5)  

where ⊥ denotes statistical independence. It is satisfied when there are not any unobserved 

variables that directly affect both selection into treatment at each time point and the outcome. 

Panel A of Figure 1 presents a DAG illustrating a set of causal relationships between the 

variables outlined previously in which the sequential ignorability assumption is satisfied. It 
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shows that both treatments, 𝐴𝐴𝑖𝑖1 and 𝐴𝐴𝑖𝑖2, directly affect the outcome, 𝑌𝑌𝑖𝑖, and that 𝐴𝐴𝑖𝑖1 also 

indirectly affects the outcome through 𝐶𝐶𝑖𝑖2. In addition, it shows that 𝐶𝐶𝑖𝑖1 confounds the effect of 

𝐴𝐴𝑖𝑖1 on 𝑌𝑌𝑖𝑖 and that 𝐶𝐶𝑖𝑖2 confounds the effect of 𝐴𝐴𝑖𝑖2 on 𝑌𝑌𝑖𝑖. Treatment assignment is sequentially 

ignorable in this figure because treatment at each time point is not directly affected by any 

unobserved variables; rather, the only unobserved variables, denoted by 𝑈𝑈𝑖𝑖1 and 𝑈𝑈𝑖𝑖2, directly 

affect the observed confounders and the outcome but not either treatment. The marginal effects 

outlined previously can be consistently estimated from the observed data by appropriately 

adjusting for all variables that directly affect both treatment and the outcome—in this case, 𝐶𝐶𝑖𝑖1 

and 𝐶𝐶𝑖𝑖2. 

 

2.2. The Problem of Treatment-induced Confounding 

Because 𝐶𝐶𝑖𝑖2 is affected by 𝐴𝐴𝑖𝑖1 and confounds the effect of 𝐴𝐴𝑖𝑖2 on 𝑌𝑌𝑖𝑖, it is a treatment-induced 

confounder. Treatment-induced confounders pose several challenges for estimating marginal 

effects of a time-varying treatment (Daniel et al. 2013). In particular, conventional methods of 

covariate adjustment, including conditioning, stratifying, or matching directly on a treatment-

induced confounder, lead to several types of bias, even when the effects of interest are identified 

under sequential ignorability. At the same time, failing to appropriately adjust for a treatment-

induced confounder also leads to bias. Thus, treatment-induced confounders seemingly present a 

“damned if you do and damned if you don’t” dilemma with regard to covariate adjustment. 

To appreciate this, first consider the causal graph in Panel B of Figure 1, and recall that a 

path in a DAG is “blocked” when it contains (a) an outcome of two or more variables, known as 

a collider, that has not been conditioned upon or (b) a non-collider that has been conditioned 

upon; otherwise, it is “unblocked” (Pearl 2009). Panel B of Figure 1 shows that conditioning 
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naively on the treatment-induced confounder, 𝐶𝐶𝑖𝑖2, blocks the causal pathway 𝐴𝐴𝑖𝑖1 → 𝐶𝐶𝑖𝑖2 →  𝑌𝑌𝑖𝑖 

emanating from treatment at time 𝑡𝑡 = 1 to the outcome, which leads to bias from over-control of 

intermediate pathways. Next consider the causal graph in Panel C of Figure 1. This graph shows 

that conditioning naively on 𝐶𝐶𝑖𝑖2 also unblocks the non-causal pathway 𝐴𝐴𝑖𝑖1 → 𝐶𝐶𝑖𝑖2 ← 𝑈𝑈𝑖𝑖2 →  𝑌𝑌𝑖𝑖 

emanating from treatment at time 𝑡𝑡 = 1 to the outcome, which leads to bias from so-called 

“endogenous selection” or “collider stratification” (Elwert and Winship 2014). Specifically, it 

shows that 𝐶𝐶𝑖𝑖2 is a collider of 𝐴𝐴𝑖𝑖1 and 𝑈𝑈𝑖𝑖2, and because 𝑈𝑈𝑖𝑖2 affects 𝑌𝑌𝑖𝑖, conditioning on 𝐶𝐶𝑖𝑖2 

induces a spurious association between treatment at time 𝑡𝑡 = 1 and the outcome. Finally, 

consider the graph in Panel D of Figure 1. This graph shows that when 𝐶𝐶𝑖𝑖2 has not been 

conditioned upon, the non-causal pathways emanating from treatment at time 𝑡𝑡 = 2 to the 

outcome, 𝐴𝐴𝑖𝑖2 ← 𝐶𝐶𝑖𝑖2 →  𝑌𝑌𝑖𝑖 and 𝐴𝐴𝑖𝑖2 ← 𝐶𝐶𝑖𝑖2 ← 𝑈𝑈𝑖𝑖2 →  𝑌𝑌𝑖𝑖, remain unblocked, which leads to bias 

from uncontrolled confounding. Thus, conventional methods of covariate adjustment inevitably 

lead to bias in estimates of marginal effects when there is treatment-induced confounding, and 

alternative methods are required. 

 

3. Regression-with-residuals for Marginal Effects 

3.1. Estimating the Marginal Effects of a Time-varying Treatment 

A structural nested mean model (SNMM) is a model for the conditional, or subpopulation 

average, effects of a time-varying treatment given past confounder and treatment history 

(Almirall et al. 2010; Robins 1994; Robins et al. 2007; Wodtke and Almirall 2017). In this 

section, we show that conditional effects modeled with an SNMM can be additively decomposed 

into a set of functions that capture the marginal, or population average, effects of interest and 

another set of functions that capture effect modification, that is, whether and how the conditional 
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effects vary around the marginal effects. We then show how to appropriately parameterize these 

functions and adapt the method of regression-with-residuals (RWR) to consistently estimate 

them. 

An SNMM is based on the following decomposition of the conditional mean of the 

potential outcomes given the confounders into a set of conditional treatment effects and a set of 

so-called “nuisance” associations:  

𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2)�𝐶𝐶𝑖𝑖1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)� = 𝛽𝛽00 + 𝜀𝜀1(𝐶𝐶𝑖𝑖1) + 𝜇𝜇1(𝐶𝐶𝑖𝑖1,𝑎𝑎1) + 𝜀𝜀2�𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)� +

𝜇𝜇2(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1),𝑎𝑎2),     (6)  

where 𝛽𝛽00 = 𝐶𝐶�𝑌𝑌𝑖𝑖(0,0)� is the marginal mean of the potential outcomes under no treatment; 

𝜀𝜀1(𝐶𝐶𝑖𝑖1) = �𝐶𝐶(𝑌𝑌𝑖𝑖(0,0)|𝐶𝐶𝑖𝑖1) − 𝐶𝐶�𝑌𝑌𝑖𝑖(0,0)�� is a nuisance association that captures the relationship 

between the confounder at time 𝑡𝑡 = 1 and the outcome under no treatment; 𝜇𝜇1(𝐶𝐶𝑖𝑖1,𝑎𝑎1) =

𝐶𝐶(𝑌𝑌𝑖𝑖(𝑎𝑎1, 0) − 𝑌𝑌𝑖𝑖(0,0)|𝐶𝐶𝑖𝑖1) is a causal function that captures the conditional effects of treatment 

at time 𝑡𝑡 = 1 given 𝐶𝐶𝑖𝑖1; 𝜀𝜀2�𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)� = �𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)�𝐶𝐶𝑖𝑖1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)� − 𝐶𝐶(𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)|𝐶𝐶𝑖𝑖1)� is 

another nuisance association that captures the relationship between the confounder at time 𝑡𝑡 = 2 

and the outcome under treatment sequence {𝑎𝑎1, 0}; and 𝜇𝜇2(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1),𝑎𝑎2) =

𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) − 𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)�𝐶𝐶𝑖𝑖1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)� is another causal function that captures the conditional 

effects of treatment at time 𝑡𝑡 = 2 given both prior confounders. The functions 𝜀𝜀1(𝐶𝐶𝑖𝑖1) and 

ε2�𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)� are called “nuisance” associations because they do not contain any 

information about the causal effects of treatment (Wodtke and Almirall 2017). 

The first causal function, 𝜇𝜇1(𝐶𝐶𝑖𝑖1,𝑎𝑎1), can be further decomposed into a marginal effect of 

interest and a term that captures effect modification as follows: 

𝜇𝜇1(𝐶𝐶𝑖𝑖1,𝑎𝑎1) = 𝜇𝜇11(𝑎𝑎1) + 𝜇𝜇12(𝐶𝐶𝑖𝑖1,𝑎𝑎1),     (7) 
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where 𝜇𝜇11(𝑎𝑎1) = 𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1, 0) − 𝑌𝑌𝑖𝑖(0,0)� is equal to the 𝐷𝐷𝐶𝐶𝐶𝐶(𝑎𝑎1) and 𝜇𝜇12(𝐶𝐶𝑖𝑖1,𝑎𝑎1) =

�𝐶𝐶(𝑌𝑌𝑖𝑖(𝑎𝑎1, 0) − 𝑌𝑌𝑖𝑖(0,0)|𝐶𝐶𝑖𝑖1) − 𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1, 0) − 𝑌𝑌𝑖𝑖(0,0)�� captures how the effect of treatment at 

time 𝑡𝑡 = 1 differs across levels of 𝐶𝐶𝑖𝑖1.  

Similarly, the second causal function, 𝜇𝜇2(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1),𝑎𝑎2), can also be further 

decomposed as follows: 

𝜇𝜇2(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1),𝑎𝑎2) = 𝜇𝜇21(𝑎𝑎1,𝑎𝑎2) + 𝜇𝜇22(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝑎𝑎2) + 𝜇𝜇23(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1),𝑎𝑎2),     (8) 

where 𝜇𝜇21(𝑎𝑎1,𝑎𝑎2) = 𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) − 𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)� is equal to another marginal effect of interest, the 

𝑃𝑃𝐶𝐶𝐶𝐶(𝑎𝑎1,𝑎𝑎2); 𝜇𝜇22(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝑎𝑎2) = �𝐶𝐶(𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) − 𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)|𝐶𝐶𝑖𝑖1) − 𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) − 𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)�� 

captures how the effect of treatment at 𝑡𝑡 = 2 differs across levels of 𝐶𝐶𝑖𝑖1; and 

𝜇𝜇23(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1),𝑎𝑎2) = �𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) − 𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)|𝐶𝐶𝑖𝑖1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)� − 𝐶𝐶(𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2) −

𝑌𝑌𝑖𝑖(𝑎𝑎1, 0)|𝐶𝐶𝑖𝑖1)� captures how the effect of treatment at 𝑡𝑡 = 2 differs across levels of 𝐶𝐶𝑖𝑖2(𝑎𝑎1) 

within levels of 𝐶𝐶𝑖𝑖1. 

Any parameterization of the marginal effects, 𝜇𝜇11(𝑎𝑎1) and 𝜇𝜇21(𝑎𝑎1,𝑎𝑎2), must satisfy the 

constraint that they are equal to zero when contemporaneous treatment is equal to zero. With a 

binary treatment, a saturated parameterization for 𝜇𝜇11(𝑎𝑎1) is 

𝜇𝜇11(𝑎𝑎1) = 𝛽𝛽10𝑎𝑎1,     (9) 

and a saturated parameterization for 𝜇𝜇21(𝑎𝑎1,𝑎𝑎2) is 

𝜇𝜇21(𝑎𝑎1,𝑎𝑎2) = (𝛽𝛽20 + 𝛽𝛽21𝑎𝑎1)𝑎𝑎2,     (10) 

where 𝛽𝛽10 = 𝐷𝐷𝐶𝐶𝐶𝐶(1), 𝛽𝛽20 = 𝑃𝑃𝐶𝐶𝐶𝐶(0,1), and 𝛽𝛽20 + 𝛽𝛽21 = 𝑃𝑃𝐶𝐶𝐶𝐶(1,1). In addition, note that 𝛽𝛽10 +

𝛽𝛽20 + 𝛽𝛽21 = 𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛽𝛽21 = 𝐼𝐼𝐼𝐼𝐶𝐶. Thus, all of the marginal effects defined previously are given 

by the parameter vector {𝛽𝛽10,𝛽𝛽20,𝛽𝛽21}. 
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Any parameterization of 𝜇𝜇12(𝐶𝐶𝑖𝑖1,𝑎𝑎1) must satisfy the constraints that it is equal to zero 

when 𝑎𝑎1 = 0 and that it has mean zero. With a treatment and confounder that are both binary, a 

saturated parameterization for this function is  

𝜇𝜇12(𝐶𝐶𝑖𝑖1,𝑎𝑎1) = 𝜃𝜃10𝑎𝑎1𝐶𝐶𝑖𝑖1⊥ ,     (11) 

where 𝐶𝐶𝑖𝑖1⊥ = �𝐶𝐶𝑖𝑖1 − 𝐶𝐶(𝐶𝐶𝑖𝑖1)� is a residual transformation of 𝐶𝐶𝑖𝑖1 with respect to its marginal mean. 

This parameterization satisfies the zero mean constraint because 𝐶𝐶(𝜃𝜃10𝑎𝑎1𝐶𝐶𝑖𝑖1⊥) = 𝜃𝜃10𝑎𝑎1𝐶𝐶(𝐶𝐶𝑖𝑖1⊥) =

𝜃𝜃10𝑎𝑎1𝐶𝐶 ��𝐶𝐶𝑖𝑖1 − 𝐶𝐶(𝐶𝐶𝑖𝑖1)�� = 0. 

Similarly, any parameterization of 𝜇𝜇22(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝑎𝑎2) must satisfy the constraints that it is 

equal to zero when 𝑎𝑎2 = 0 and that it has mean zero. A saturated parameterization for this 

function is  

𝜇𝜇22(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝑎𝑎2) = (𝜃𝜃20 + 𝜃𝜃21𝑎𝑎1)𝑎𝑎2𝐶𝐶𝑖𝑖1⊥ ,     (12) 

which has mean zero because the expectation function is a linear operator and because 𝐶𝐶(𝐶𝐶𝑖𝑖1⊥) =

0, as above. 

Finally, any parameterization of 𝜇𝜇23(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1),𝑎𝑎2) must satisfy the constraints that 

it is equal to zero when 𝑎𝑎2 = 0 and that it has mean zero conditional on 𝐶𝐶𝑖𝑖1. A saturated 

parameterization for this function is  

𝜇𝜇23(𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1),𝑎𝑎2) = (𝜃𝜃22 + 𝜃𝜃23𝑎𝑎1 + (𝜃𝜃24 + 𝜃𝜃25𝑎𝑎1)𝐶𝐶𝑖𝑖1⊥)𝑎𝑎2𝐶𝐶𝑖𝑖2⊥(𝑎𝑎1),     (13) 

where 𝐶𝐶𝑖𝑖2⊥(𝑎𝑎1) = �𝐶𝐶𝑖𝑖2(𝑎𝑎1)− 𝐶𝐶(𝐶𝐶𝑖𝑖2(𝑎𝑎1)|𝐶𝐶𝑖𝑖1)� is a residual transformation of 𝐶𝐶𝑖𝑖2(𝑎𝑎1) with respect 

to its conditional mean given 𝐶𝐶𝑖𝑖1. This parameterization satisfies the zero mean constraint 

because the expectation function is a linear operator and because 𝐶𝐶(𝐶𝐶𝑖𝑖2⊥(𝑎𝑎1)|𝐶𝐶𝑖𝑖1) =

𝐶𝐶 ��𝐶𝐶𝑖𝑖2(𝑎𝑎1) − 𝐶𝐶(𝐶𝐶𝑖𝑖2(𝑎𝑎1)|𝐶𝐶𝑖𝑖1)�|𝐶𝐶𝑖𝑖1� = 𝐶𝐶(𝐶𝐶𝑖𝑖2(𝑎𝑎1)|𝐶𝐶𝑖𝑖1) − 𝐶𝐶(𝐶𝐶𝑖𝑖2(𝑎𝑎1)|𝐶𝐶𝑖𝑖1) = 0. The parameter 
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vector {𝜃𝜃10,𝜃𝜃20,𝜃𝜃21,𝜃𝜃22,𝜃𝜃23,𝜃𝜃24, 𝜃𝜃25} captures how the confounders modify the effect of 

treatment at each time point. 

The nuisance associations, 𝜀𝜀1(𝐶𝐶𝑖𝑖1) and 𝜀𝜀2�𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)�, must also be parameterized 

under the constraint that they have mean zero given the past, which can be accomplished using 

the same residualized confounders as defined previously. Specifically, a saturated 

parameterization for the first nuisance association is  

𝜀𝜀1(𝐶𝐶𝑖𝑖1) = 𝛾𝛾10𝐶𝐶𝑖𝑖1⊥ ,     (14) 

and a saturated parameterization for the second nuisance association is 

𝜀𝜀2�𝐶𝐶𝑖𝑖1,𝑎𝑎1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)� = (𝛾𝛾20 + 𝛾𝛾21𝑎𝑎1 + (𝛾𝛾22 + 𝛾𝛾23𝑎𝑎1)𝐶𝐶𝑖𝑖1⊥)𝐶𝐶𝑖𝑖2⊥(𝑎𝑎1),     (15) 

where the parameter vector {𝛾𝛾10,𝛾𝛾20, 𝛾𝛾21,𝛾𝛾22, 𝛾𝛾23} captures the associational (i.e., causal and 

possibly non-causal) effects of the confounders on the outcome. 

Combining parametric expressions for the causal functions and nuisance associations 

yields the following saturated SNMM:  

𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2)|𝐶𝐶𝑖𝑖1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)� = 𝛽𝛽00 + 𝛾𝛾10𝐶𝐶𝑖𝑖1⊥ + 𝛽𝛽10𝑎𝑎1 + 𝜃𝜃10𝑎𝑎1𝐶𝐶𝑖𝑖1⊥ + (𝛾𝛾20 + 𝛾𝛾21𝑎𝑎1 +

(𝛾𝛾22 + 𝛾𝛾23𝑎𝑎1)𝐶𝐶𝑖𝑖1⊥)𝐶𝐶𝑖𝑖2⊥(𝑎𝑎1) + (𝛽𝛽20 + 𝛽𝛽21𝑎𝑎1)𝑎𝑎2 + (𝜃𝜃20 + 𝜃𝜃21𝑎𝑎1)𝑎𝑎2𝐶𝐶𝑖𝑖1⊥ + (𝜃𝜃22 + 𝜃𝜃23𝑎𝑎1 +

(𝜃𝜃24 + 𝜃𝜃25𝑎𝑎1)𝐶𝐶𝑖𝑖1⊥)𝑎𝑎2𝐶𝐶𝑖𝑖2⊥(𝑎𝑎1).     (16) 

This model differs from those outlined in Almirall et al. (2010), Wodtke and Almirall (2017), 

and Vansteelandt and Sjolander (2016; e.g., their Equation 6) in that the residualized 

confounders, rather than the untransformed values of these variables, are included as part of 

interaction terms in the causal functions. It also differs from the highly constrained SNMMs 

outlined in Vansteelandt and Sjolander (2016; e.g., their Equation 3) and Wodtke (2018) in that 

effect modification is not assumed to be absent but rather is explicitly modeled, or in other 

words, {𝜃𝜃10,𝜃𝜃20,𝜃𝜃21,𝜃𝜃22,𝜃𝜃23,𝜃𝜃24,𝜃𝜃25} are free parameters that are not assumed to be zero. 
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An SNMM parameterized as above can be estimated using RWR, which proceeds in two 

stages. In the first stage, residual terms are estimated by centering 𝐶𝐶𝑖𝑖1 around its sample mean 

and by centering 𝐶𝐶𝑖𝑖2 around its estimated conditional mean given 𝐶𝐶𝑖𝑖1 and 𝐴𝐴𝑖𝑖1. Specifically, �̂�𝐶𝑖𝑖1⊥ =

𝐶𝐶𝑖𝑖1 − 𝐶𝐶�(𝐶𝐶𝑖𝑖1) and �̂�𝐶𝑖𝑖2⊥ = 𝐶𝐶𝑖𝑖2 − 𝐶𝐶�(𝐶𝐶𝑖𝑖2|𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1), where 𝐶𝐶�(𝐶𝐶𝑖𝑖1) = 1
𝑛𝑛
∑ 𝐶𝐶𝑖𝑖1𝑖𝑖  and 𝐶𝐶�(𝐶𝐶𝑖𝑖2|𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1) is 

estimated from a generalized linear model with, for example, the logit or probit link when 𝐶𝐶𝑖𝑖2 is 

binary. Then, in the second stage, least squares estimates are computed for a linear regression of 

the outcome on prior treatments, the residualized confounders, and interactions involving the 

prior treatments and residualized confounders. This regression can be expressed as follows: 

𝐶𝐶�(𝑌𝑌𝑖𝑖|𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐶𝐶𝑖𝑖2,𝐴𝐴𝑖𝑖2) = �̂�𝛽00 + 𝛾𝛾�10�̂�𝐶𝑖𝑖1⊥ + �̂�𝛽10𝐴𝐴𝑖𝑖1 + 𝜃𝜃�10𝐴𝐴𝑖𝑖1�̂�𝐶𝑖𝑖1⊥ + �𝛾𝛾�20 + 𝛾𝛾�21𝐴𝐴𝑖𝑖1 +

(𝛾𝛾�22 + 𝛾𝛾�23𝐴𝐴𝑖𝑖1)�̂�𝐶𝑖𝑖1⊥��̂�𝐶𝑖𝑖2⊥ + ��̂�𝛽20 + �̂�𝛽21𝐴𝐴𝑖𝑖1�𝐴𝐴𝑖𝑖2 + �𝜃𝜃�20 + 𝜃𝜃�21𝐴𝐴𝑖𝑖1�𝐴𝐴𝑖𝑖2�̂�𝐶𝑖𝑖1⊥ + �𝜃𝜃�22 + 𝜃𝜃�23𝐴𝐴𝑖𝑖1 +

�𝜃𝜃�24 + 𝜃𝜃�25𝐴𝐴𝑖𝑖1��̂�𝐶𝑖𝑖1⊥�𝐴𝐴𝑖𝑖2�̂�𝐶𝑖𝑖2⊥ .     (17) 

where different combinations of the estimated beta coefficients, ��̂�𝛽00, �̂�𝛽10, �̂�𝛽20, �̂�𝛽21�, are 

consistent for the marginal effects of interest under the identification assumptions outlined 

previously and under the assumption that the model is correctly specified, which is here assured 

by saturating it. This approach is nearly identical to conventional least squares regression except 

that the confounders at each time point are first residualized with respect to the observed past. 

Figure 2 displays a stylized graph that illustrates the logic of RWR estimation. It shows 

that residualizing the confounders at each time point with respect to the observed past purges the 

treatment-induced confounder, 𝐶𝐶𝑖𝑖2, of its association with prior treatment, 𝐴𝐴𝑖𝑖1. As a result, 

including the residual transformation of  𝐶𝐶𝑖𝑖2 in a model for the outcome avoids bias due to over-

control and endogenous selection. In addition, because RWR adjusts for observed confounding 

by conditioning on residual transformations of the confounders in an outcome regression rather 

than by re-weighting the data to appropriately balance the confounders across future treatments, 
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it also avoids the limitations associated with inverse-probability-of-treatment-weighted 

estimation, such as the difficulty associated with constructing well-behaved weights for 

continuous treatments. Finally, by including the residualized confounders as part of interaction 

terms with treatment, RWR can accommodate effect modification while neatly isolating the 

marginal effects of interest in a single parameter vector. 

 

3.2. Model Specification and Other Considerations 

In practice, estimating a saturated SNMM is often impractical, or even impossible, either because 

the confounders or treatments are continuous, because there are a large number of time periods, 

or because there are many confounders. In this situation, a set of parametric constraints must be 

imposed on the SNMM to facilitate estimation. For example, an analyst might consider 

excluding all higher-order interactions involving confounders at multiple time periods, in which 

case regression-with-residual (RWR) estimation would proceed exactly as outlined previously 

except with the outcome regression in the second stage simplified as follows: 

𝐶𝐶�(𝑌𝑌𝑖𝑖|𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐶𝐶𝑖𝑖2,𝐴𝐴𝑖𝑖2) = �̂�𝛽00 + 𝛾𝛾�10�̂�𝐶𝑖𝑖1⊥ + �̂�𝛽10𝐴𝐴𝑖𝑖1 + 𝜃𝜃�10𝐴𝐴𝑖𝑖1�̂�𝐶𝑖𝑖1⊥ + (𝛾𝛾�20 + 𝛾𝛾�21𝐴𝐴𝑖𝑖1)�̂�𝐶𝑖𝑖2⊥ +

��̂�𝛽20 + �̂�𝛽21𝐴𝐴𝑖𝑖1�𝐴𝐴𝑖𝑖2 + �𝜃𝜃�20 + 𝜃𝜃�21𝐴𝐴𝑖𝑖1�𝐴𝐴𝑖𝑖2�̂�𝐶𝑖𝑖1⊥ + �𝜃𝜃�22 + 𝜃𝜃�23𝐴𝐴𝑖𝑖1�𝐴𝐴𝑖𝑖2�̂�𝐶𝑖𝑖2⊥ .     (18) 

Of course, many other constraints are possible, but recall that RWR requires a correctly specified 

model for the outcome. Thus, if any of these modeling constraints are inappropriate, then RWR 

is biased, even when the effects of interest are identified under sequential ignorability. 

Additional modeling considerations may be required of RWR when there are many time 

periods. Specifically, it may be necessary to impose rather stringent constraints on the SNMM in 

order to reduce its complexity. For example, an analyst might consider not merely excluding all 
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higher-order interactions but also constraining parameters to be invariant over time, in which 

case the outcome regression would be simplified as follows: 

𝐶𝐶��𝑌𝑌𝑖𝑖|𝐶𝐶𝑖𝑖,𝐴𝐴𝑖𝑖, � = �̂�𝛽00 + 𝛾𝛾� ∑ �̂�𝐶𝑖𝑖𝑡𝑡⊥𝑡𝑡 + �̂�𝛽 ∑ 𝐴𝐴𝑖𝑖𝑡𝑡𝑡𝑡 + 𝜃𝜃� ∑ 𝐴𝐴𝑖𝑖𝑡𝑡�̂�𝐶𝑖𝑖𝑡𝑡⊥𝑡𝑡 ,     (19) 

where overbars denote variable “histories,” that is, 𝐶𝐶𝑖𝑖 = {𝐶𝐶𝑖𝑖1, … ,𝐶𝐶𝑖𝑖𝑖𝑖} and 𝐴𝐴𝑖𝑖 = {𝐴𝐴𝑖𝑖1, … ,𝐴𝐴𝑖𝑖𝑖𝑖}. 

Relatedly, with many time periods, it may also be necessary to constrain the models for the 

confounders in the first stage, and this might be accomplished by relying on some of the same 

simplifying constraints considered here (e.g., no higher-order interactions, time-invariant 

coefficients, and so forth). Nevertheless, RWR requires correctly specified models, which may 

be challenging to achieve in applications with a large number of time periods, as the potential 

complexity of these models increases with the dimension of the data. 

Additional modeling considerations are also required with RWR when there are multiple 

different confounders for which adjustment is necessary. First, all of the different confounders 

must be appropriately residualized in the first stage. This is accomplished by fitting a model for 

each confounder at each time point using only prior variables as predictors and then extracting 

their residuals. Thus, these variables are residualized exactly as outlined previously without 

needing to specify the causal ordering of different confounders measured concurrently in time. 

Second, all of the residualized confounders must be included in the second-stage regression for 

the outcome, which may now involve additional interaction terms between treatment and the 

residualized confounders.  

When estimating marginal effects with RWR and multiple different confounders, the 

method can accommodate all types of treatment-by-confounder interaction except for higher-

order (i.e., three-way and above) interactions involving treatment and two or more different 

confounders measured contemporaneously. In the presence of such higher-order interactions, the 
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conditional effects of treatment cannot be conveniently decomposed and parameterized with 

residual terms. As an approximation, RWR could still be implemented in this situation by 

residualizing the different confounders and their cross-products using separate models for each 

term, but with this approach, it is possible that the models could be incompatible. Thus, with 

multiple different confounders, RWR estimation of marginal effects is most appropriate for a 

moderately constrained SNMM in which some especially complex forms of effect modification 

are assumed to be absent. Although somewhat limiting, this modeling constraint is still 

considerably weaker than that required of other methods for estimating marginal effects with an 

SNMM (e.g., Wodtke 2018). 

RWR estimation is also only appropriate for a linear SNMM. It is therefore best suited 

for use with continuous outcomes. In certain situations, it may also be suitable for use with other 

types of outcomes for which a linear model is sometimes a reasonable approximation, such as 

linear probability models for binary outcomes. Relatedly, with RWR, the outcome model is 

typically fit via ordinary least squares. If the data come from a complex sampling design, RWR 

may also be implemented using weighted or generalized least squares. The method therefore 

inherits the strengths and also some of the limitations of least squares estimators, such as 

sensitivity to outliers, and its performance should be assessed with regression diagnostics. 

 In sum, RWR estimation of a moderately constrained SNMM for marginal effects is a 

relatively simple adaptation of conventional least squares regression. It proceeds as follows: first, 

the confounders at each time point are regressed on all prior variables and then residualized, and 

second, the outcome is regressed on prior treatments, the residualized confounders, and to 

accommodate effect modification, an admissible set of interaction terms involving prior 

treatments and the residualized confounders. The proposed method can accommodate all types of 
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effect modification except for those involving higher-order interactions between treatment and 

two or more different confounders measured at the same point in time. RWR is consistent under 

the identification assumptions outlined previously along with the assumption of correct model 

specification. Because identifying correct models is challenging with many time periods and/or 

confounders, the method may be best suited for applications that have fewer time periods and 

that require adjustment for a smaller number of covariates. At the same time, however, the 

complexity of the modeling required with other methods, such as IPTW and g-estimation, also 

increases with the dimension of the data, as a large number of time periods and/or confounders 

present a set of generic challenges for causal inference in the time-varying setting. 

Valid standard errors for RWR estimates can be obtained using the nonparametric 

bootstrap (Almirall et al. 2014; Efron and Tibshirani 1994). This involves repeatedly sampling 𝑛𝑛 

observations from the observed data with replacement in order to construct 𝑏𝑏 replicate samples. 

RWR estimates are then computed from each of the 𝑏𝑏 samples, and their standard deviation 

across them gives the bootstrap standard error. Efron and Tibshirani (1994) suggest using 𝑏𝑏 ≥

200 replications when estimating standard errors. 

 

3.3. Estimating Controlled Direct Effects in Analyses of Causal Mediation 

In this section, we briefly demonstrate that the methods outlined previously can also be used to 

estimate controlled direct effects in analyses of causal mediation when there are treatment-

induced mediator-outcome confounders. To appreciate this, first let 𝑑𝑑 denote exposure to a 

binary treatment, and let 𝑚𝑚 denote a putative mediator that is also binary. In addition, let 

𝑌𝑌𝑖𝑖(𝑑𝑑,𝑚𝑚) denote the potential outcome for subject 𝑖𝑖 had she previously been exposed to treatment 

𝑑𝑑 and the mediator 𝑚𝑚. Finally, let 𝑋𝑋𝑖𝑖 denote a treatment-outcome confounder for subject 𝑖𝑖 
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measured at baseline, and let 𝑍𝑍𝑖𝑖(𝑑𝑑) denote a post-treatment confounder of the mediator-outcome 

relationship, which is indexed as a potential outcome by 𝑑𝑑 to reflect that it is a treatment-induced 

confounder.  

The controlled direct effect (𝐶𝐶𝐷𝐷𝐶𝐶) measures the causal relationship between treatment 

and the outcome when the putative mediator is fixed at the same value for all individuals. It can 

be formally defined as  

𝐶𝐶𝐷𝐷𝐶𝐶(𝑑𝑑,𝑚𝑚) = 𝐶𝐶�𝑌𝑌𝑖𝑖(𝑑𝑑,𝑚𝑚) − 𝑌𝑌𝑖𝑖(0,𝑚𝑚)�.     (20) 

This quantity can be non-parametrically identified from the observed data under the assumptions 

of stable unit treatment values, consistency, positivity, and sequential ignorability (VanderWeele 

2009, 2015). In this context, sequential ignorability is satisfied when there are no unobserved 

treatment-outcome or mediator-outcome confounders.  

Although conventional methods are biased in the presence of treatment-induced 

confounders, the 𝐶𝐶𝐷𝐷𝐶𝐶 can still be consistently estimated using a structural nested mean model 

(SNMM) and regression-with-residuals (RWR; Zhou and Wodtke 2019). For example, consider 

the following moderately constrained SNMM for the joint effects of treatment and the mediator 

on the outcome,  

𝐶𝐶�𝑌𝑌𝑖𝑖(𝑑𝑑,𝑚𝑚)|𝑋𝑋𝑖𝑖,𝑍𝑍𝑖𝑖(𝑑𝑑)� = 𝛽𝛽00 + 𝛾𝛾10𝑋𝑋𝑖𝑖⊥ + 𝛽𝛽10𝑑𝑑 + 𝜃𝜃10𝑑𝑑𝑋𝑋𝑖𝑖⊥ + (𝛾𝛾20 + 𝛾𝛾21𝑑𝑑 + 𝛾𝛾22𝑋𝑋𝑖𝑖⊥)𝑍𝑍𝑖𝑖⊥(𝑑𝑑) +

(𝛽𝛽20 + 𝛽𝛽21𝑑𝑑)𝑚𝑚 + (𝜃𝜃20 + 𝜃𝜃21𝑑𝑑)𝑚𝑚𝑋𝑋𝑖𝑖⊥ + (𝜃𝜃22 + 𝜃𝜃23𝑑𝑑)𝑚𝑚𝑍𝑍𝑖𝑖⊥(𝑑𝑑),     (21) 

where 𝑋𝑋𝑖𝑖⊥ = 𝑋𝑋𝑖𝑖 − 𝐶𝐶(𝑋𝑋𝑖𝑖), 𝑍𝑍𝑖𝑖⊥(𝑑𝑑) = 𝑍𝑍𝑖𝑖(𝑑𝑑) − 𝐶𝐶(𝑍𝑍𝑖𝑖(𝑑𝑑)|𝑋𝑋𝑖𝑖), and, for simplicity, higher-order 

interactions involving both confounders are excluded. With this model, the 𝐶𝐶𝐷𝐷𝐶𝐶 is given by 

𝐶𝐶𝐷𝐷𝐶𝐶(𝑑𝑑,𝑚𝑚) = (𝛽𝛽10 + 𝛽𝛽21𝑚𝑚)𝑑𝑑, any potential modification of the treatment effect by the baseline 

confounder, 𝑋𝑋𝑖𝑖, is captured by 𝜃𝜃10, and any potential modification of the mediator effect by 𝑋𝑋𝑖𝑖 or 

the post-treatment confounder, 𝑍𝑍𝑖𝑖(𝑑𝑑), is captured by {𝜃𝜃20, 𝜃𝜃21,𝜃𝜃22,𝜃𝜃23}. This model can be 
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estimated via RWR by, first, centering 𝑋𝑋𝑖𝑖 around its sample mean and centering 𝑍𝑍𝑖𝑖 around its 

estimated conditional mean given 𝑋𝑋𝑖𝑖 and 𝐷𝐷𝑖𝑖, and then second, fitting a regression of the outcome 

on treatment, the mediator, the residualized confounders, and a set of interaction terms between 

treatment, the mediator, and the residualized confounders. As in the time-varying setting, valid 

standard errors can be obtained from the nonparametric bootstrap. 

 

4. Simulation Experiments 

We use a series of simulation experiments to evaluate the performance of regression-with-

residuals (RWR) estimation for marginal effects relative to other methods. Specifically, we use 

10,000 simulations of n = 500 to estimate the cumulative treatment effect (𝐶𝐶𝐶𝐶𝐶𝐶) of a time-

varying exposure measured at two time points. In each simulation, we generate an “unobserved” 

continuous variable 𝑈𝑈𝑖𝑖, an observed continuous time-varying confounder {𝐶𝐶𝑖𝑖1,𝐶𝐶𝑖𝑖2}, a binary 

time-varying treatment {𝐴𝐴𝑖𝑖1,𝐴𝐴𝑖𝑖2}, and a continuous end-of-study outcome, 𝑌𝑌𝑖𝑖. In these 

simulations, [𝑈𝑈𝑖𝑖]~𝐼𝐼�𝜇𝜇𝑈𝑈𝑖𝑖 = 0,𝜎𝜎𝑈𝑈𝑖𝑖
2 = 1�; [𝐶𝐶𝑖𝑖1]~𝐼𝐼�𝜇𝜇𝐶𝐶𝑖𝑖1 = 0,𝜎𝜎𝐶𝐶𝑖𝑖1

2 = 1�; 

[𝐶𝐶𝑖𝑖2|𝑈𝑈𝑖𝑖 ,𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1]~𝐼𝐼�𝜇𝜇𝐶𝐶𝑖𝑖2|𝑈𝑈𝑖𝑖,𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1 = 0.5𝑈𝑈𝑖𝑖 + 0.5𝐶𝐶𝑖𝑖1 + 0.5𝐴𝐴𝑖𝑖1,𝜎𝜎𝐶𝐶𝑖𝑖2|𝑈𝑈𝑖𝑖,𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1
2 = 1�; 

[𝐴𝐴𝑖𝑖1|𝐶𝐶𝑖𝑖1]~Bernoulli �𝑝𝑝𝐴𝐴𝑖𝑖1 = 𝛷𝛷(𝛾𝛾𝐶𝐶𝑖𝑖1)�; [𝐴𝐴𝑖𝑖2|𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐶𝐶𝑖𝑖2]~Bernoulli �𝑝𝑝𝐴𝐴𝑖𝑖2|𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐶𝐶𝑖𝑖2 =

𝛷𝛷(𝛾𝛾𝐶𝐶𝑖𝑖1 + 0.5𝐴𝐴𝑖𝑖1 + 𝛾𝛾𝐶𝐶𝑖𝑖2)�; [𝑌𝑌𝑖𝑖|𝑈𝑈𝑖𝑖,𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐶𝐶𝑖𝑖2,𝐴𝐴𝑖𝑖2]~𝐼𝐼 �𝜇𝜇𝑌𝑌𝑖𝑖|𝑈𝑈𝑖𝑖,𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐶𝐶𝑖𝑖2,𝐴𝐴𝑖𝑖2 = 0.5𝑈𝑈𝑖𝑖 +

𝛾𝛾�𝐶𝐶𝑖𝑖1 − 𝜇𝜇𝐶𝐶𝑖𝑖1� + 𝐴𝐴𝑖𝑖1 �0.2 + 𝜃𝜃�𝐶𝐶𝑖𝑖1 − 𝜇𝜇𝐶𝐶𝑖𝑖1�� + �𝐶𝐶𝑖𝑖2 − 𝜇𝜇𝐶𝐶𝑖𝑖2��𝛾𝛾 + �𝐶𝐶𝑖𝑖1 − 𝜇𝜇𝐶𝐶𝑖𝑖1�𝜂𝜂� +

𝐴𝐴𝑖𝑖2 �0.2 + 0.1𝐴𝐴𝑖𝑖1 + 𝜃𝜃 ��𝐶𝐶𝑖𝑖1 − 𝜇𝜇𝐶𝐶𝑖𝑖1� + �𝐶𝐶𝑖𝑖2 − 𝜇𝜇𝐶𝐶𝑖𝑖2��� ,𝜎𝜎𝑌𝑌𝑖𝑖|𝑈𝑈𝑖𝑖,𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1,𝐶𝐶𝑖𝑖2,𝐴𝐴𝑖𝑖2
2 = 1�, where Φ is the 

standard normal cumulative distribution function, 𝛾𝛾 is a parameter used to control the level of 

treatment-outcome confounding, 𝜃𝜃 is a parameter used to control the level of treatment effect 
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modification, and 𝜂𝜂 is a parameter used to control the degree to which the associational effect of 

𝐶𝐶𝑖𝑖2 on 𝑌𝑌𝑖𝑖 is modified by 𝐶𝐶𝑖𝑖1. In all simulations, the 𝐶𝐶𝐶𝐶𝐶𝐶 is identified and its true value is 0.5.  

We compare the performance of RWR estimation of a moderately constrained SNMM for 

marginal effects (henceforth “RWR with interactions”) to the performance of conventional least 

squares regression, IPTW estimation of a marginal structural model, g-estimation of a highly 

constrained SNMM in which effect modification is assumed to be absent, and RWR estimation 

of the same highly constrained SNMM (henceforth “RWR without interactions”). To compute 

conventional regression estimates, we fit by least squares a linear regression of the outcome on 

prior treatments, the observed confounders, and a treatment-by-treatment interaction. The 

estimated 𝐶𝐶𝐶𝐶𝐶𝐶 is then given by the sum of the coefficients on prior treatments and the interaction 

term.  

To compute IPTW estimates (Robins et al. 1994, 2000), we fit a linear regression of the 

outcome on prior treatments and their interaction using weighted least squares, with weights 

equal to  

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝐴𝐴𝑖𝑖1=𝑎𝑎𝑖𝑖1)
𝑃𝑃�𝐴𝐴𝑖𝑖1 = 𝑎𝑎𝑖𝑖1�𝐶𝐶𝑖𝑖1�

× 𝑃𝑃�𝐴𝐴𝑖𝑖2 = 𝑎𝑎𝑖𝑖2�𝐴𝐴𝑖𝑖1 = 𝑎𝑎𝑖𝑖1�
𝑃𝑃�𝐴𝐴𝑖𝑖2 = 𝑎𝑎𝑖𝑖2�𝐶𝐶𝑖𝑖1,𝐴𝐴𝑖𝑖1 = 𝑎𝑎𝑖𝑖1,𝐶𝐶𝑖𝑖2�

 ,     (22) 

where 𝑤𝑤𝑖𝑖 is estimated from a series of probit models for the conditional probabilities in the 

numerator and denominator of the weight. At each time point, weighting by 𝑤𝑤𝑖𝑖 balances (in 

expectation) prior confounders across future treatments by giving more weight to subjects with 

confounder histories that are underrepresented in a treatment group and less weight to subjects 

with confounder histories that are overrepresented in a treatment group. The estimated 𝐶𝐶𝐶𝐶𝐶𝐶 is 

the sum of the coefficients on prior treatments and their interaction.  

To compute g-estimates of marginal effects using a highly constrained SNMM without 

any effect modification, we use the g-estimator proposed by Vansteelandt and Sjolander (2016). 
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Specifically, we first fit a linear regression of the outcome on prior treatments and their 

interaction, estimated propensity scores for treatment at each time point, an interaction between 

treatment at time 𝑡𝑡 = 1 and the estimated propensity score for treatment at time 𝑡𝑡 = 2, and the 

observed confounders at both time points. The coefficients on treatment at time 𝑡𝑡 = 2 and its 

interaction with treatment at time 𝑡𝑡 = 1 from this model provide estimates of the proximal 

treatment effect. Then, we subtract the estimated proximal treatment effect from the outcome for 

each respondent and regress this transformed outcome on the treatment, propensity score, and the 

observed confounder at time 𝑡𝑡 = 1. The coefficient on treatment from this model provides an 

estimate of the distal treatment effect, and then the sum of the distal and proximal treatment 

effects computed as above give the estimated 𝐶𝐶𝐶𝐶𝐶𝐶. Vansteelandt and Sjolander (2016) show that 

this estimator is asymptotically equivalent to the doubly robust g-estimator considered in Robins 

et al. (1992).  

To compute estimates based on RWR without interactions, we first residualize the 

observed confounders at each time point by regressing them on all prior variables and then 

centering them around their estimated conditional means. Second, we regress the outcome on 

prior treatments and their interaction as well as the residualized confounders. The estimated 𝐶𝐶𝐶𝐶𝐶𝐶 

is the sum of the coefficients on prior treatments and their interaction. Computing estimates 

based on RWR with interactions proceeds in almost exactly the same manner except that all two-

way interactions between the treatments and residualized confounders are additionally included 

in the outcome regression. Part A of the Online Supplement presents the R code used to execute 

all of the simulations outlined previously. 

We compare the performance of these methods in terms of their bias, standard deviation, 

and root mean squared error (RMSE) under different levels of treatment-outcome confounding 
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and under different levels of effect modification. Because treatment-induced confounding is 

present in all simulations, we expect conventional regression to perform poorly across all 

scenarios. Because IPTW estimation is relatively inefficient and susceptible to finite-sample bias 

when confounders strongly predict treatment, we expect its performance to suffer in simulations 

with high levels of treatment-outcome confounding. Because g- and RWR estimation of 

marginal effects using a highly constrained SNMM require that the confounders must not modify 

the effects of treatment, we expect their performance to deteriorate in simulations with high 

levels of treatment effect modification. Finally, because RWR with interactions accommodates 

this type of effect modification, we expect it to perform well across all simulations.  

Table 1 presents results from a first set of simulation experiments, wherein we varied the 

level of treatment-outcome confounding in the absence of effect modification. Conventional 

regression is badly biased at all levels of confounding, as expected. IPTW estimation performs 

well at lower levels of confounding but suffers from finite-sample bias at higher levels and is 

relatively inefficient, also as expected. G- and both types of RWR estimation perform similarly 

in these simulations: they are all unbiased and achieve comparable efficiency gains relative to 

IPTW. 

Table 2 presents results from a second set of simulation experiments, wherein we varied 

the level of treatment effect modification after setting the level of treatment-outcome 

confounding at a moderate-to-high level. As expected, both conventional regression and IPTW 

estimation perform poorly. Although IPTW estimation accommodates effect modification, it still 

suffers from finite-sample bias due to the high level of confounding and is relatively inefficient. 

Also as expected, G-estimation and RWR estimation without interactions are increasingly biased 
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as the magnitude of treatment effect modification rises, whereas RWR with interactions is 

unbiased and achieves the lowest RMSE across all scenarios. 

Finally, because RWR requires strong modeling assumptions that may be difficult to 

satisfy in some applications, we evaluate the method’s performance with an SNMM that has an 

incorrectly specified nuisance association. Specifically, Table 3 presents results from a third set 

of simulation experiments, wherein we varied the degree to which the associational effect of 𝐶𝐶𝑖𝑖2 

on 𝑌𝑌𝑖𝑖 is modified by 𝐶𝐶𝑖𝑖1 after setting the level of both treatment-outcome confounding and 

treatment effect modification at moderate-to-high levels. Because all the SNMMs considered in 

these simulations constrain the associational effects of the confounders to be invariant, they are 

all incorrectly specified when this type of effect modification is present.  

In Table 3, both conventional regression and IPTW estimation perform poorly because, 

as before, these simulations involve a moderate-to-high level of treatment-induced confounding. 

G-estimation and RWR without interactions also do not perform very well because these 

simulations involve a nontrivial level of effect modification. Note, however, that the 

performance of g-estimation is similar regardless of the degree to which the nuisance 

associations are incorrectly specified, which reflects its doubly robust property. The performance 

of RWR without interactions, by contrast, further deteriorates with greater misspecification of 

the nuisance associations. Similarly, the bias and RMSE of RWR with interactions also steadily 

increases with the degree to which the nuisance associations are incorrectly specified. 

Nevertheless, RWR with interactions still appears to outperform other methods, even when it is 

based on an SNMM with misspecified nuisance associations. 
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5. Empirical Examples 

5.1. The 𝐶𝐶𝐶𝐶𝐶𝐶 of Neighborhood Poverty on Academic Achievement 

Does growing up in a disadvantaged neighborhood inhibit academic achievement? The effects of 

neighborhood composition on child development have long concerned social scientists across 

several different disciplines (e.g., Chetty et al. 2016; Leventhal and Brooks-Gunn 2000; 

Sampson et al. 2008; Wodtke et al. 2011). To illustrate how the proposed method can be used 

with time-varying treatments, we estimate the 𝐶𝐶𝐶𝐶𝐶𝐶 of residence in a disadvantaged 

neighborhood throughout the early life course on adolescent math achievement using data from 

𝑛𝑛 = 1,135 individuals in the Panel Study of Income Dynamics – Child Development 

Supplement (PSID-CDS; Michigan Survey Research Center 2014).2  

In these data, the outcome, 𝑌𝑌𝑖𝑖, represents standardized scores on the Woodcock-Johnson 

applied problems test measured at the end of follow-up when individuals were age 13 to 17 

(Woodcock and Johnson 1989). The time-varying treatment, 𝑎𝑎𝑡𝑡, is a standardized index of 

neighborhood disadvantage generated via a principal component analysis of multiple census tract 

characteristics, such as the poverty rate, unemployment rate, and median household income. 

Treatment is first measured during childhood when individuals were age 5 to 9 and then again 

during adolescence when they were age 11 to 15. The vector of baseline confounders, 𝐶𝐶𝑖𝑖1, 

contains a set of time-invariant factors, such as race, gender, and birth cohort, as well as a set of 

time-varying characteristics, including equivalized family income, parental marital status, and 

                                                           
2 Some of the data used in this analysis are based on “sensitive data files” from the PSID-CDS, 
which were obtained under special contractual arrangements designed to protect the anonymity 
of respondents. These data are not available from the authors. Persons interested in obtaining 
sensitive data files from the PSID-CDS should contact psidhelp@isr.umich.edu. A set of 
replication files for this analysis, without any sensitive data, is provided as part of the online 
supplementary material. 

mailto:psidhelp@isr.umich.edu
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lagged achievement test scores, all measured during early childhood. Another vector of 

confounders, 𝐶𝐶𝑖𝑖2, contains the same set of time-varying characteristics only now measured just 

before the onset of adolescence.  

Previously, Wodtke (2018) estimated the 𝐶𝐶𝐶𝐶𝐶𝐶 of residence in a disadvantaged 

neighborhood with data from the PSID-CDS by fitting a conventional regression model using 

least squares, a marginal structural model using inverse probability of treatment weighting 

(IPTW), and a highly constrained structural nested mean model (SNMM) without any effect 

modification using regression-with-residuals (RWR). In that analysis, RWR estimates indicated 

that long-term residence in a disadvantaged neighborhood has a severe negative effect on math 

achievement—an effect that is obscured by bias in conventional regression models and 

imprecisely captured by IPTW. These estimates, however, are premised on the strong and 

arguably unrealistic assumption of no effect modification.  

We overcome this limitation by estimating the 𝐶𝐶𝐶𝐶𝐶𝐶 using RWR and an SNMM that 

includes all two-way treatment-by-confounder interactions. Specifically, we model the distal, 

proximal, and cumulative marginal effects of exposure to a disadvantaged neighborhood on 

adolescent math achievement using the following SNMM: 

𝐶𝐶�𝑌𝑌𝑖𝑖(𝑎𝑎1,𝑎𝑎2)|𝐶𝐶𝑖𝑖1,𝐶𝐶𝑖𝑖2(𝑎𝑎1)� = 𝛽𝛽00 + 𝛾𝛾10𝑖𝑖 𝐶𝐶𝑖𝑖1⊥ + 𝛽𝛽10𝑎𝑎1 + 𝜃𝜃10𝑖𝑖 𝑎𝑎1𝐶𝐶𝑖𝑖1⊥ + 𝛾𝛾20𝑖𝑖 𝐶𝐶𝑖𝑖2⊥(𝑎𝑎1) + 𝛽𝛽20𝑎𝑎2 +

𝜃𝜃20𝑖𝑖 𝑎𝑎2𝐶𝐶𝑖𝑖1⊥ + 𝜃𝜃21𝑖𝑖 𝑎𝑎2𝐶𝐶𝑖𝑖2⊥(𝑎𝑎1),     (23) 

where 𝛽𝛽10 = 𝐷𝐷𝐶𝐶𝐶𝐶(1), 𝛽𝛽20 = 𝑃𝑃𝐶𝐶𝐶𝐶(𝑎𝑎1, 1), and 𝛽𝛽10 + 𝛽𝛽20 = 𝐶𝐶𝐶𝐶𝐶𝐶. Note that this model is just a 

moderately constrained version of Equation (16). 

The first row of Table 4 reports RWR estimates for the distal, proximal, and cumulative 

effects of living in a disadvantaged neighborhood. We compute these estimates by, first, 

centering the elements of 𝐶𝐶𝑖𝑖1 around their sample means and centering the elements of 𝐶𝐶𝑖𝑖2 
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around their estimated conditional means, which come from least squares regressions of 𝐶𝐶𝑖𝑖2 on 

the treatment and confounders measured earlier during childhood. Second, we compute the 

marginal effects of interest by regressing the outcome on both treatments, the residualized 

confounders, and all two-way interactions between the treatments and residualized confounders. 

For comparative purposes, the second and third rows of Table 4 report RWR and g-estimates of 

marginal effects from a highly constrained SNMM in which all treatment-by-confounder 

interactions are excluded. Part B of the Online Supplement presents the R code used to generate 

the results in this table.  

All of the estimates in Table 4 indicate that the distal effect of childhood exposure to a 

disadvantaged neighborhood on adolescent math achievement is substantively small and fails to 

reach conventional significance thresholds, that the proximal effect of adolescent exposure is 

larger and statistically significant, and that the cumulative effect of sustained exposure is 

substantively large and highly significant. For example, according to these estimates, sustained 

exposure to a poor neighborhood one standard deviation above the national mean of the 

disadvantage index, rather than sustained exposure to a wealthy neighborhood one standard 

deviation below the national mean, is estimated to reduce adolescent math achievement by about 

0.127 × 2 = 0.254 standard deviations.  

The results in Table 4 are similar across the different methods employed. Consistent with 

this finding, a Wald test of the null hypothesis that 𝜃𝜃10 = 𝜃𝜃20 = 𝜃𝜃21 = 0 provides little evidence 

that the effects of living in a disadvantaged neighborhood are modified by any of the 

confounders (𝜒𝜒2 = 10.7,𝑑𝑑𝑑𝑑 = 17,𝑝𝑝 = 0.873). In this application, it therefore appears that our 

findings are not particularly sensitive to the presence or absence of effect modification. 
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Nevertheless, it is the flexibility of RWR that allows for an easy assessment of marginal effects 

under different specifications.  

 

5.2. The 𝐶𝐶𝐷𝐷𝐶𝐶 of Education on Mental Health 

Does income explain the effect of education on depression? A number of prior studies have 

investigated the causal relationship between education and mental health (e.g., Cutler and Lleras-

Muney 2006; Heckman et al. 2018; Lee 2011), but the mechanisms underlying this causal link 

remain unclear. Education may improve mental health by providing access to higher economic 

status and greater resources, or it may affect mental health through other channels—for example, 

by providing greater access to health information and improving health behaviors. To illustrate 

the utility of regression-with-residuals (RWR) for analyses of causal mediation, we estimate the 

controlled direct effect (𝐶𝐶𝐷𝐷𝐶𝐶) of college completion on mental health controlling for family 

income as a putative mediator. In this example, a comparison of the total effect with the 𝐶𝐶𝐷𝐷𝐶𝐶 

helps to adjudicate whether family economic status explains the mental health benefits of college 

completion.  

We use data from 𝑛𝑛 = 2,719 individuals in the National Longitudinal Survey of Youth 

1979 (NLSY79) who were age 14-17 when they were first interviewed in 1979. In these data, the 

outcome, 𝑌𝑌𝑖𝑖, represents scores on the Center for Epidemiologic Studies Depression Scale (CES-

D) when respondents were age 40. We standardize CES-D scores to have mean zero and unit 

variance, where a higher score implies greater depression. The treatment, 𝑑𝑑, is defined as 

completion of a four-year college degree by age 25, while the mediator of interest, 𝑚𝑚, is the 

percentile rank of equivalized family income averaged over ages 36-40. The vector of baseline 

confounders, 𝑋𝑋𝑖𝑖, include gender, race, Hispanic ethnicity, mother's years of schooling, father's 
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presence in the home, number of siblings, urban residence, educational expectations, and 

percentile scores on the Armed Forces Qualification Test (AFQT). Finally, the vector of post-

treatment confounders, 𝑍𝑍𝑖𝑖, include CES-D scores measured when respondents were age 27-30, 

the proportion of time married between 1990 and 1998, and the number of relationship 

transitions between 1990 and 1998. These variables capture mental health and family stability 

during young adulthood, which may be affected by treatment (college completion by age 25) and 

also affect both the mediator (family income between age 36 and 40) and the outcome 

(depression at age 40). 

With these data, we first estimate the total effect of college completion using the 

following structural nested mean model (SNMM): 

𝐶𝐶(𝑌𝑌𝑖𝑖(𝑑𝑑)|𝑋𝑋𝑖𝑖) = 𝛽𝛽00 + 𝛾𝛾10𝑖𝑖 𝑋𝑋𝑖𝑖⊥ + 𝛽𝛽10𝑑𝑑 + 𝜃𝜃10𝑖𝑖 𝑑𝑑𝑋𝑋𝑖𝑖⊥.     (24) 

Under this specification, 𝛽𝛽10 captures the total effect of college completion on depression at age 

40. RWR estimates of this model yield a sizable and statistically significant total effect of 

education on mental health, where completing college is estimated to lower depression scores by 

0.165 standard deviations (𝑆𝑆𝐶𝐶 =  0.066,𝑝𝑝 < 0.05) on average. 

We then model the joint effects of college completion and family income on depression 

using the following SNMM: 

𝐶𝐶�𝑌𝑌𝑖𝑖(𝑑𝑑,𝑚𝑚)|𝑋𝑋𝑖𝑖,𝑍𝑍𝑖𝑖(𝑑𝑑)� = 𝛽𝛽00 + 𝛾𝛾10𝑖𝑖 𝑋𝑋𝑖𝑖⊥ + 𝛽𝛽10𝑑𝑑 + 𝜃𝜃10𝑖𝑖 𝑑𝑑𝑋𝑋𝑖𝑖⊥ + 𝛾𝛾20𝑖𝑖 𝑍𝑍𝑖𝑖⊥(𝑑𝑑) + (𝛽𝛽20 + 𝛽𝛽21𝑑𝑑)𝑚𝑚 +

𝜃𝜃20𝑖𝑖 𝑚𝑚𝑋𝑋𝑖𝑖⊥ + 𝜃𝜃21𝑖𝑖 𝑚𝑚𝑍𝑍𝑖𝑖⊥(𝑑𝑑),     (25) 

where the controlled direct effect is given by 𝐶𝐶𝐷𝐷𝐶𝐶(𝑚𝑚) = 𝛽𝛽10 + 𝛽𝛽21𝑚𝑚. Note that this model is 

just a moderately constrained version of Equation (21). 

The first panel of Figure 3 reports estimates for the controlled direct effects of college 

completion on depression computed using RWR with interactions. These estimates are obtained 
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by, first, computing residuals for each of the baseline confounders 𝑋𝑋𝑖𝑖 and post-treatment 

confounders 𝑍𝑍𝑖𝑖, which involves centering the elements of 𝑋𝑋𝑖𝑖 around their sample means and 

centering the elements of 𝑍𝑍𝑖𝑖 around their estimated conditional means given the past. Second, the 

controlled direct effects are then estimated by fitting the model described previously using these 

residual terms. Because the 𝐶𝐶𝐷𝐷𝐶𝐶(𝑚𝑚) may vary with 𝑚𝑚, we estimate and plot controlled direct 

effects across the support of the mediator. For comparative purposes, the second and third panels 

of Figure 3 report RWR and g-estimates based on a highly constrained SNMM in which all 

treatment-by-confounder and mediator-by-confounder interactions are excluded. Part C of the 

Online Supplement presents the R code used to generate these results. 

These estimates provide some evidence that the effect of education on depression is 

mediated by family income. For example, point estimates of the 𝐶𝐶𝐷𝐷𝐶𝐶 when family income is 

fixed at or above its sample median are substantially smaller in magnitude than the estimated 

total effect, and the 95% confidence intervals contain 0 at every value of family income. Thus, 

these results suggest that at least some portion of the total effect operates through pathways 

involving family economic resources.  

The estimates in Figure 3 are fairly consistent across the different methods employed. 

Moreover, a Wald test of the null hypothesis that 𝜃𝜃10 = 𝜃𝜃20 = 𝜃𝜃21 = 0 does not provide much 

evidence of effect modification (𝜒𝜒2 = 26.9,𝑑𝑑𝑑𝑑 = 21,𝑝𝑝 = 0.175). Thus, it appears that our 

findings are insensitive to the inclusion of treatment-by-confounder interactions in this 

application as well, but recall that the flexibility of RWR is what enables us to easily assess 

whether estimated marginal effects are robust to different specifications. 
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6. Discussion and Conclusions 

In analyses of causal mediation and time-varying treatment effects, treatment-induced 

confounders often complicate efforts to estimate marginal effects. Several available methods 

avoid these complications, including marginal structural models and inverse probability of 

treatment weighting (IPTW) as well as g- and regression-with-residuals (RWR) estimation of 

highly constrained structural nested mean models (SNMMs), but they are not without limitations. 

Specifically, the performance of IPTW is poor with continuous treatments and/or mediators, a 

high degree of confounding, and small samples, while both g- and RWR estimation of highly 

constrained SNMMs are biased for the marginal effects of interest when effect modification is 

present. To overcome these limitations, we adapt the method of RWR to estimate marginal 

effects with a set of moderately constrained SNMMs that easily accommodate several types of 

effect modification as well as continuous treatments and/or mediators. A series of simulation 

experiments indicate that the proposed method outperforms IPTW estimation of MSMs in 

general and that it outperforms both g- and RWR estimation of highly constrained SNMMs in 

the presence of effect modification. Because the proposed method involves only simple and 

familiar computations, it is easily implemented with standard software, as we demonstrate across 

two empirical illustrations. 

Nevertheless, despite its many advantages, RWR estimation of marginal effects is 

premised on a number of strong modeling assumptions. Specifically, it requires a correctly 

specified SNMM, which in turn requires that all of the causal functions and nuisance 

associations that compose this model are correctly specified. It also requires the absence of more 

complex forms of effect modification involving two or more confounders measured 

contemporaneously, which complicates the decomposition and parameterization of the SNMM 
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causal functions using residual terms. The assumption of a correctly specified SNMM may be 

reasonable with a relatively small number of confounders and time periods, but identifying a 

correct model may be challenging with high dimensional data. 

In this situation, researchers might consider combining the methods proposed in this 

study with either IPTW or g-estimation to leverage their strengths while mitigating their 

weaknesses. For example, RWR could be used to adjust for a subset of the time-varying 

confounders that prove difficult to appropriately balance using IPTW. Then, a simplified SNMM 

involving only this subset of confounders and a more limited set of interaction terms could be fit 

by RWR to an appropriately weighted sample in which the remaining confounders have all been 

balanced. Alternatively, the confounders could first be residualized with respect to the observed 

past and then included in interaction terms with treatment and/or a mediator at each stage of the 

g-estimation procedure outlined by Vansteelandt and Sjolander (2016). This may provide some 

protection against bias due to misspecification of the nuisance associations in an SNMM, as g-

estimation is doubly robust, while simultaneously accommodating several types of effect 

modification in analyses of marginal effects. RWR might also be combined with variable 

selection and regularization techniques, such as the LASSO, in an effort to identify sufficiently 

accurate yet parsimonious models in applications with many time periods or confounders. 

In sum, RWR estimation of a moderately constrained SNMM for marginal effects 

provides an appealing alternative to IPTW estimation of MSMs and to both g- and RWR 

estimation of highly constrained SNMMs in which effect modification is assumed away. The 

proposed method improves upon IPTW estimation in that it is more efficient, easy to use with 

continuous treatments and/or mediators, and avoids finite-sample bias when the magnitude of 

observed confounding is strong. It improves upon g- and RWR estimation of highly constrained 
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SNMMs in that it can accommodate all but highly complex forms of effect modification while 

still neatly isolating the marginal effects of interest in a single set of parameters. Although the 

proposed method is premised on a number of strong modeling assumptions, it can be integrated 

with IPTW or g-estimation in situations where these assumptions are questionable to enhance its 

robustness. Given their flexibility, efficiency, and ease of use, we expect moderately constrained 

SNMMs along with the associated method of RWR to be frequently used in future studies of 

causal mediation and time-varying treatment effects. 
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Figures 
 

 
 
Figure 1. Directed acyclic graphs illustrating a set of causal relationships between a time-varying treatment (𝐴𝐴𝑡𝑡), an observed time-
varying confounder (𝐶𝐶𝑡𝑡), an unobserved time-varying covariate (𝑈𝑈𝑡𝑡), and an outcome (𝑌𝑌)  
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Figure 2. A stylized graph illustrating the logic of regression-with-residuals 
 
Notes: 𝐴𝐴𝑡𝑡 denotes a time-varying treatment, 𝐶𝐶1⊥ = 𝐶𝐶1 − 𝐶𝐶(𝐶𝐶1) and 𝐶𝐶2⊥ = 𝐶𝐶2 − 𝐶𝐶(𝐶𝐶2|𝐶𝐶1,𝐴𝐴1) denote residualized time-varying 
confounders, 𝑈𝑈𝑡𝑡 denotes an unobserved time-varying covariate, and 𝑌𝑌 denotes an end-of-study outcome. 
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Figure 3. Estimated controlled direct effects of college completion on depression (controlling for family income) 
 
Notes: Sample includes respondents to the 1979 National Longitudinal Survey of Youth who were age 13-17 when first interviewed. 
Confidence intervals are based on the nonparametric bootstrap with 1,000 replications. RWR = regression-with-residuals. 
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Tables 
 

  

γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5
Conventional regression

Bias -0.150 -0.200 -0.252 -0.299 -0.351
SD 0.134 0.137 0.141 0.145 0.151
RMSE 0.201 0.242 0.288 0.332 0.382

IPTW estimation
Bias 0.000 0.002 0.005 0.020 0.057
SD 0.135 0.147 0.176 0.228 0.296
RMSE 0.135 0.147 0.176 0.229 0.302

G-estimation
Bias 0.000 0.000 -0.001 0.002 0.000
SD 0.134 0.139 0.145 0.152 0.163
RMSE 0.134 0.139 0.145 0.152 0.163

RWR w/o interactions
Bias 0.000 0.000 -0.001 0.002 0.000
SD 0.134 0.139 0.145 0.151 0.161
RMSE 0.134 0.139 0.145 0.151 0.161

RWR w/ interactions
Bias 0.000 0.000 -0.001 0.002 -0.001
SD 0.134 0.140 0.146 0.154 0.164
RMSE 0.134 0.140 0.146 0.154 0.164

Estimator/statistic Magnitude of treatment-outcome confounding

Table 1. Results from simulation experiments evaluating the performance of RWR 
relative to other estimators under different levels of treatment-outcome confounding

Notes: SD = standard deviation; RMSE = root mean squared error; IPTW = inverse-
probability-of-treatment-weighted; RWR = regression-with-residuals. Across all 
simulations, Θ=0 and η=0. Results are based on 10,000 simulations. See the Online 
Supplement for details.



40 
 

  

θ=0.1 θ=0.2 θ=0.3 θ=0.4 θ=0.5
Conventional regression

Bias -0.369 -0.439 -0.508 -0.575 -0.645
SD 0.145 0.149 0.151 0.155 0.163
RMSE 0.396 0.463 0.530 0.595 0.665

IPTW estimation
Bias 0.022 0.024 0.023 0.028 0.021
SD 0.235 0.246 0.261 0.274 0.299
RMSE 0.236 0.247 0.262 0.275 0.300

G-estimation
Bias -0.023 -0.047 -0.071 -0.094 -0.119
SD 0.155 0.161 0.164 0.168 0.177
RMSE 0.157 0.168 0.179 0.193 0.213

RWR w/o interactions
Bias -0.037 -0.076 -0.115 -0.151 -0.192
SD 0.154 0.161 0.166 0.171 0.182
RMSE 0.159 0.178 0.202 0.228 0.264

RWR w/ interactions
Bias 0.001 0.001 0.001 0.000 -0.001
SD 0.156 0.161 0.164 0.167 0.175
RMSE 0.156 0.161 0.164 0.167 0.175

Estimator/statistic Magnitude of treatment effect modification

Table 2. Results from simulation experiments evaluating the performance of RWR 
relative to other estimators under different levels of treatment effect modification and a 
moderate-to-high level of treatment-outcome confounding

Notes: SD = standard deviation; RMSE = root mean squared error; IPTW = inverse-
probability-of-treatment-weighted; RWR = regression-with-residuals. Results are based 
on 10,000 simulations. Across all simulations, γ=0.4 and η=0. See the Online 
Supplement for details.
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η=0.1 η=0.2 η=0.3 η=0.4 η=0.5
Conventional regression

Bias -0.586 -0.597 -0.608 -0.616 -0.627
SD 0.158 0.162 0.164 0.166 0.174
RMSE 0.606 0.618 0.630 0.638 0.651

IPTW estimation
Bias 0.030 0.031 0.029 0.033 0.027
SD 0.276 0.280 0.292 0.296 0.318
RMSE 0.277 0.282 0.294 0.297 0.319

G-estimation
Bias -0.093 -0.094 -0.095 -0.094 -0.095
SD 0.169 0.173 0.175 0.176 0.183
RMSE 0.193 0.197 0.199 0.200 0.206

RWR w/o interactions
Bias -0.160 -0.171 -0.182 -0.189 -0.201
SD 0.173 0.176 0.179 0.179 0.188
RMSE 0.236 0.246 0.255 0.261 0.275

RWR w/ interactions
Bias 0.015 0.026 0.039 0.050 0.063
SD 0.169 0.172 0.174 0.176 0.185
RMSE 0.169 0.174 0.179 0.183 0.195

Estimator/statistic Magnitude of associational effect modification

Table 3. Results from simulation experiments evaluating the performance of RWR 
relative to other estimators under different levels of nuisance model misspecification and 
moderate-to-high levels of both treatment-outcome confounding and treatment effect 
modification

Notes: SD = standard deviation; RMSE = root mean squared error; IPTW = inverse-
probability-of-treatment-weighted; RWR = regression-with-residuals. Results are based 
on 10,000 simulations. Across all simulations, γ=0.4 and θ=0.4. See the Online 
Supplement for details.
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Est SE Est SE Est SE

RWR with interactions -0.034 (0.049) -0.094 (0.046) * -0.127 (0.038) ***
RWR without interactions -0.030 (0.044) -0.097 (0.040) * -0.127 (0.038) ***
G-estimation -0.032 (0.040) -0.096 (0.041) * -0.127 (0.047) **

CTE

Table 4. Estimated marginal effects of exposure to disadvantaged neighborhoods on end-of-study math 
achievement

Notes: Sample includes respondents who were interviewed at the 1997 wave of the Child Development 
Supplement between age 3 and 7. Results are combined estimates from 100 imputations. The outcome is 
standardized to have zero mean and unit variance. Standard errors are based on the block boostrap with 
1,000 replications. Est = point estimate; SE = standard error; RWR = regression-with-residuals; DTE = 
distal treatment effect; PTE = proximal treatment effect; CTE = cumulative treatment effect.
†p  < 0.10, *p  < 0.05, **p  < 0.01, and ***p  < 0.001 for two-sided tests of no effect.

Estimator/statistic
DTE (1,0) PTE (a1,1)


